

The Silicone Breast Implant Education Symposium

Manufacturing, Materials Science And Mechanical Properties

ASPS/PSEF – ASAPS

V. Leroy Young, MD

- Chemistry of silicones
- Biocompatibility
- Design
- Fillers and shells
- Production processes
- Testing and quality control
- Packaging and sterilization
- Labeling and tracking

- Silicon
- Silica
- Silicone

- Semi-metallic element
- Second most abundant substance in earth's crust (after oxygen)
 - Also a trace element in plants and animals
- Not found in nature in its elemental form but reduced from natural silicas (silicon oxides)

- Insoluble in water and chemically inert
- Very common mineral found naturally in crystalline and amorphous forms
- Sand and quartz are nearly pure crystalline forms of silica

- Amorphous silica has same basic atomic structure as crystalline form but lacks highly ordered geometry
- Used as desiccants, adsorbents, reinforcing agents, builders for detergents, binders, and catalyst components

- Large family of organic polymers with a repeating backbone of alternating Si and O atoms
 - Organic groups attach directly to the Si atom via silicon-carbon bonds
- Polydimethylsiloxane (PDMS) / methyl group

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 $Si - O - Si - O - Si - O - Si - O - CH_3$ CH_3 CH

- Chains of PDMS can be linked together to form a polymer network
 - Process called crosslinking or curing
- Chemical reaction occurs between an Si-vinyl group on one chain and a hydrogen atom bonded to Si on another chain
- Gel and elastomer are composed of the PDMS polymer, crosslinker, and catalyst

- Crosslinkers are shorter-chained polymers
- Catalyst used to cure gel & elastomer for gelfilled implants is typically platinum
 - very little catalyst is needed for curing
 - gel often contains <15 ppm platinum</p>
- Catalyst used to cure elastomer shell for salinefilled implants is often tin

Silicone Fluids / Oils

- Molecules are arranged in linear chains, with viscosity dependent on chain length
- Straight chains may range from <10 to many thousand Si-O units

- Molecules are crosslinked to branch into a semi-liquid 3-D polymer network
 - more branching produces thicker gels
- Network is swollen with PDMS fluid to produce a sticky, cohesive mass
- Silica is never added to gel

Elastomers (Rubbers)

- Long chain PDMS fluid is joined for side bonding
- Much more densely crosslinked than gel
- Special forms of amorphous silica are added and tightly bound into the polymer network
- Silica reinforcement gives elastomer its strength and extensibility

Comparative Polymer Viscosity Stiffer Plastic Surgery. In

Degree of polymerization	viscosity centistrokes	comparative viscosity
3	1.04	water
30	9.44	baby oil
269	100	olive oil
591	335.3	heavy motor oil
960	10,000	honey
1400	1,000,000	PDMS rubber
2600	10,000,000	hot asphalt

V.L. Young, MD, 04/04 - DRAFT

Physical & Chemical Properties THE AMERICAN SCI.

- Thermal and oxidative stability
- Physical properties don't depend on temp
- High degree of chemical inertness
- Water repellant (hydrophobic)
- Good dielectric strength
- Low surface tension
- Ideal for many commercial applications

- Hydrophobicity
- Stability at all temperatures
- High permeability to gases
- Transparency
- High flexibility
- Low rigidity
- Low wettability

- Pure fumed amorphous silica is used as a reinforcing agent in elastomer medical implants
- Crystalline silica is used as a component of building materials, ceramics, concretes, and glasses
- Both types are used as fillers in cosmetics and foods

Silicone Uses In Medicine

- Fluids
 - Coatings for needles, sutures, syringes, and implanted devices
 - Instrument lubricants
- Gels
 - Fillers for breast and testicular implants
 - Gel sheeting
- Elastomers
 - Artificial joints and facial implants
 - Tubing, catheters, drains, and shunts

Biocompatibility

- Silicones are used in medicine because of their extreme biologic inertness
- Hydrophobic properties
 - Cells cannot attach themselves to silicones
 - Chemicals and enzymes cannot gain sufficient contact to affect material
- Medical grade silicone has been the standard for biocompatibility against which all other compounds are compared

Biocompatibility Testing

- Safety testing of gel and elastomer are first conducted in vitro and in experimental animals
- International organization for standards (ISO) and FDA specify extent and nature of testing needed to demonstrate safety of a device in contact with human tissues

Biocompatibility Testing

Cytotoxicity
Hemolysis
Immunogenicity
Intracutaneous
injection
Chronic toxicity

Sensitization
Pyrogenicity
Genotoxicity
Intramuscular
implantation

Materials Testing

- Oversight and regulations
 - American Society for Testing & Materials
 - International Organization for Standards
 - Food and Drug Administration
- ASTM test protocols performed by manufacturers on random batches of raw materials and/or finished products
 - sometimes performed on explants that have been retrieved

Relevant ASTM Protocols

F703: Standard specification for implantable breast prostheses

D412: Test method for vulcanized rubber

D1349: Temperature testing

F748: Biological test methods

F1251: Terminology for polymeric biomaterials

F604: Specifications for silicone elastomers

in medical applications

Mechanical Properties Tested

- Tensile strength
- Percent elongation
- Breaking force
- Abrasion resistance
- Patch-bond strength
- No reliable or clinically relevant test to predict device failure or material fatigue

Breast Implant Design

- Filler material
 - Silicone gel formulation
- Shell formulation
 - Shell is different for different fillers and for smooth vs. Textured surface
- Shell size and shape
 - Round vs. contoured
 - Low, medium, or high profile (base diameter)
 - Customized for reconstruction or deformities

- Saline
- Silicone gel
- Cohesive silicone gel
 - Formulation contains more crosslinks
 - Designed to minimize risk of gel extrusion and maintain shape if an implant ruptures

Shell Surface Options

- Smooth or textured
- Texturing process
 - Inamed applies salt crystals to the outer surface of the shell
 - after curing, the crystals are removed
 - Mentor uses a reverse laminate
- Titanium coating available in Europe

Design Specifications

- Each product has specifications that are specific to the product
 - The criteria by which a device design is developed, controlled, and evaluated
- Documented physical, chemical, and performance characteristics of a design
- Allowable variations for each characteristic

Breast Implant Design

- Raw materials formulations (for gels and shells) are developed according to implant specifications
- An outside source supplies the raw materials to the implant manufacturer
- Materials are then inspected for purity and manufacturing consistency

Breast Implant Design

- For each style, mandrels are produced for every possible volume
 - May range from ~50 cc to ~800 cc
- Mandrels are solid forms manufactured from either stainless steel or plastic
- The mandrel handle represents the location of the sealing patch
 - For saline implants with an anterior valve and posterior patch, two openings are needed

Breast Implant Mandrels

V.L. Young, MD. 04/04 - DRAFT

- Different elastomer dispersions are used for different types of implants
- Room temperature vulcanization (RTV) dispersion is typically used for shells filled with saline
- High temperature vulcanization (HTV) dispersion is typically used for silicone gel-filled shells

- Elastomer dispersion consists of linear silicone polymer (liquid), crosslinker, amorphous silica, and catalyst evenly distributed in a solvent (xylene)
- Manufacturing process involves:
 - 1) evaporation of the solvent
 - 2) curing: crosslinking reactions between the linear polymer and the crosslinker

Silicone Gel Formulation

- Supplied by outside source in 2 parts:
 - 1) Catalyst
 - 2) Crosslinker
- Two parts are mixed
- The vulcanization (curing) process begins and is completed inside the finished shell

Basic Production Process

- Very labor-intensive
- The mandrel is dipped by hand into the elastomer dispersion and removed
- Only a thin layer of silicone remains after the solvent evaporates and curing begins
- Mandrel is re-dipped and removed until the shell reaches desired thickness

Mandrel re-dipping and curing by heat/humidity continue until shell reaches desired thickness

Barrier Layer

- Current silicone gel implants contain a barrier layer designed to reduce the diffusion of gel through the shell
- Contains groups of large organic compounds that physically block smaller, unlinked molecules from passing through
- Proprietary barrier layer formulation is added between layers of elastomer
 - Fluorosilicone or diphenyl layer

When the shells are finished, they are subjected to a final cure cycle in an oven

The shell then is peeled from the mandrel

Assembly - Sealing

Inflatable implant

- Posterior sealing patch and fill valve are bonded to shell via vulcanization
 - Sealing patch and valve may be separate or incorporated as a single unit
- Inflatable implants tend to have thicker shells for added strength

A valve is incorporated into devices designed to be filled with saline

Posterior sealing patch and unsealed shell

Bonding of the sealing patch to the shell through vulcanization

Courtesy Mentor Corp.
V.L. Young, MD, 04/04 - DRAFT

Assembly - Sealing & Filling

Silicone Gel Implant

- Gel is injected through a tiny needle hole in the patch
 - curing process continues inside the shell
- Fill hole is sealed with RTV silicone adhesive
- Filled implant is placed in a vacuum to remove air bubbles from the gel

Testing And Quality Control

- FDA mandates that all medical device manufacturers have a system of clearly-defined quality controls
- Manufacturing process is validated to produce consistent quality
- Each completed implant is inspected according to quality specifications
- Each must meet all standards

Quality Control Checks Are

Performed Throughout Production

V.L. Young, MD, 04/04 - DRAFT

Implant Leak Test:

One Of Many Post-production Tests

Packaging and Sterilization

Each implant is cleaned and double primary packaged (thermoform-within-thermoform)

V.L. Young, MD, 04/04 - DRAFT

EXERCISED AND DUCKAGE Seals are checked for integrity Abstitic Plastic Surgery. In

Sealed packages are sterilized by dry heat (high temperatures over time)

Courtesy Mentor Corp.

Labeling And Tracking

- After sterilization, products are quarantined and certified for quality
- Labels for patients and package inserts are placed in secondary packaging boxes and labeled
- Implants are released to product inventory
- Implants are tracked through labels returned by patients and surgeons